Item-based 标签

协同过滤Item-based算法实现电影推荐系统

  |   0 评论   |   1,165 浏览

摘要: 采用离线式计算推荐给每位用户的电影,采用 Item-based 算法并做了适当修改,
主要分两部分:

  1. 计算电影的相似度:利用调整的余弦相似度计算方法;
  2. 相似度加权求和:使用用户已打分的电影的分数进行加权求和,权值为用户未打分的各电影与打分的各电影的相似度,然后对所有相似度的和求平均。

系统详细设计

离线计算推荐电影模块

系统所用算法

本系统采用协同过滤(Collaborative Filtering)推荐算法。协同过滤推荐算法分为预测过程和推荐过程,其包括 Item-based 算法和 User-based 算法,但经查阅相关资料发现 User-based 算法存在两个问题:

  1. 数据的稀疏性:一个大型的电影推荐系统会有大量的电影信息,用户已打分的电影可能只占总量的很少一部分,不同用户之间电影打分的重叠性较低,导致算法无法找到一个兴趣用户;
  2. 算法的扩展性:最近邻算法的计算量会随着用户和电影信息数量的增加而增加,不适合信息量大的情况。所以本系统采用了 Item-based 协同过滤算法,并对其做了适当修改。

计算过程